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The convergent beam and bend extinction contour techniques of electron microscopy
are capable of providing much more information than can be obtained from conven-
tional diffraction patterns and it is the objective of this work to examine the symmetry
properties of each of these patterns. The diffraction of fast electrons by a thin parallel-
sided slab has been studied by group theory and by a graphical construction. We find
that the pattern symmetries may be described by thirty-one diffraction groups and that
each of these diffraction groups is isomorphic to one of the point groups of diperiodic
plane figures and to one of the thirty-one Shubnikov groups of coloured plane figures.

A graphical representation of each diffraction group is given, together with tables
showing how the diffraction groups are related to the specimen point groups and under
certain assumptions to the crystal point groups. These tables assume the symmetric
Laue condition and ignore the presence of irreducible lattice translations normal to the
slab. By using the tables, crystal point groups can be obtained from convergent beam or
bend contour patterns. The method is demonstrated by experiments on several
materials, but particularly on germanium and gallium-arsenide specimens since the
similarity of these materials exemplifies the sensitivity of the technique.
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172 B.F.BUXTON AND OTHERS

1. INTRODUCGTION

Electron diffraction as a technique for crystallographic analysis has been relatively little used in
the past because it has often been regarded as a modified form of X-ray diffraction with added
complications and limitations. In this paper we attempt to demonstrate that, far from being an
impoverished form of X-ray diffraction, electron diffraction is a powerful tool for deducing crystal
symmetries, sometimes in a more simple and direct fashion than can otherwise be achieved.

It has long been recognized that as electron diffraction does not obey Friedel’s rule it can be
used to investigate the presence of an inversion centre in a crystal. The many papers on this
subject have been reviewed by Cowley (1967) and Uyeda (1974). However, the determination
of symmetry from conventional electron diffraction patterns is severely hampered by the almost
inevitable variation of thickness or orientation of the diffracting specimen. One way of over-
coming this difficulty relies on contrast changes across twin boundaries in enantiomorphic crystals
(Tanaka & Honjo 1964; Tanaka 1975) but it was not until the development of the convergent
beam technique, where the illuminated area may be only 10nm in diameter, that symmetry
properties could be carefully investigated (Goodman & Lempfuhl 1968). The convergent beam
diffraction patterns show a great wealth of detail which we believe is not greatly affected by
inelastic and diffuse scattering in distinct contrast to the better known Kikuchi (Thomas 1970)
and Coates (Joy 1974) patterns. It is only surprisingly recently that it has been recognized that
bend extinction contour patterns may also be used for the careful examination of crystal sym-
metries (Steeds, Tatlock & Hampson 1973). This method relies on the eye’s ability at pattern
recognition to pick out symmetry properties of the distorted patterns which are normally obtained.

In this paper we give the derivation of tables of diffraction symmetries of bend contour and
convergent beam patterns under the assumption of plane parallel sided regions of specimens with
illumination incident approximately normal to the surface. Both group theoretical and diagram-
matic derivations are presented and the results illustrated by a number of examples.

2. THEORY

Following Tournarie (1961, 1962) and Kambe (1967) we suppose that the incident electron
beam may be represented as a plane wave which impinges on a thin, perfect, crystalline slab
(figure 1 a). This slab is to be regarded as cut from an infinite perfect crystal so that it is infinite in
transverse directions and has parallel plane surfaces which are perpendicular to the reciprocal
lattice vector s of the parent crystal. It is therefore invariant under a translation by any of the
lattice vectors {t} parallel to its planar surfaces. Since the vectors {z} are a subset of the lattice
vectors {I} of the parent crystal, it is easily shown that the net reciprocal to {x} may be generated
by projecting the vectors {g}, reciprocal to {I}, into the surface plane. Denoting the projections
of vectors into the surface plane by capitals, we have

G-t = 2nn, (2.1)
where z is an integer.

The solutions of the high energy Schrédinger equation (Fujiwara 1961, 1962)

[V24k2—U(r)] ¥(r) = HE(r) = 0, (2.2)

therefore satisfy a two dimensional version of Bloch’s theorem (Kambe 1967). In the above, £ is
thewavenumber of the relativistic electrons of mass m and U(r) is 2m/#2 times the optical potential.
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ELECTRON DIFFRACTION SYMMETRIES 173

An optical potential must be used in (2.2) to allow for absorption of electrons from the coherent,
elastically scattered waves due to inelastic processes (see, for example, Dederichs 1972; Howie &
Stern 1972). In principle, this optical potential is a non-local operator which must, however, be
symmetric in its position representation (Dederichs 1972). We use a local (and complex) approxi-
mation to the optical potential, as shown in equation (2.2). U(r) is assumed to vanish outside the
crystal slab, so that if the z axis is chosen parallel to s as in figure 1, we can write,

U(r) = Ue(1) A(2), (2.3)

where for a crystal of thickness £, the ‘hat’ function 4(z) is unity for 0 < z < fand zero elsewhere.
Uc(r) has the space group symmetry of the infinite crystal (Dederichs 19%72). By using the con-
venient symbol {R|v} (Seitz 1936) to represent the transformation of coordinates

r' = {R|v}r = Rr+v, (2.4)

(R represents a rotation or reflexion of the space group, hereafter referred to as a ‘rotation’ and
v represents a translation) and the function operator, the space group symmetry of Ug(r) can be
written as

(R} Us(r) = Ua(R-1(r—v)) = Us(r). (2.5)

In § 2 (4) below, we will discuss the consequences of this space group symmetry, but first we turn
to the solutions of (2.2) and an extra symmetry inherent in that equation.

K —K

(a) (b)
k —k
0 0
N t N t
J K+G “K-G
z\

FiGure 1. (a) Shows electrons with wavevector k incident on the crystal slab from above; () shows the
time reversed waves incident from beneath.

(a) Outgoing solutions and reciprocity
Defining I'g(K) =(k*—(K+G)%) if k2> (K+ G)z}

—iJ(K+G)2—k) if k< (K+G)? (2.6)

Kambe (1967) has shown that the outgoing solution of (2.2) for a plane wave exp (ik-r) incident
from above may be written as,
g/§(+) = elK R il'y(K)z | > R(éH( K) elK+G) R o—iTG(K)z (2‘7)
G
for z < 0; while for z > ¢ we have
3{/}{+) =3 T(G+)( K) clK+G) R eiI‘G(K)z, ] (2. 8)

G
15-2
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174 B.F. BUXTON AND OTHERS

since U(r) is zero in these regions. R (K) is the reflexion coefficient for the G diffracted
wave, and TG (K) is the transmission coefficient. The (+) symbol attached to these quantities
and the wave function shows that they refer to a wave incident from above. Similarly, for a
wave exp[i(K:R —I'(K) z)] incident from below,

TI((_) _ ? T(G~)(K) el(K+G) R o—iI'G(K)z (2.9)
for z < 0, and for z > ¢,
P = ik R =il 4 3 RO)(K) elK+6) R ¢if 6Kz, (2.10)
G

These solutions ¥ and ¥©) would be related by time reversal symmetry if 2 were Hermitian
(figure 1). Here, H is not Hermitian but it is symmetric in its position representation so we can
still relate ¥ and Y& by using reciprocity (Bilhorn ef al. 1964). Explicitly, we begin with the
identity

0= | ar[P(n B (1) - (1) RE(P)], (2.11)
and use the Schrédinger equation (2.2), Bloch’s theorem and the matching conditions on the
wavefunction and its derivative on the surfaces of the slab (see Kambe 1967 for these boundary
conditions) to show that

I'6(K) TS(K) = T'g(—K—G)TE(— K- G). (2.12)

For high energy electrons incident nearly normally on the slab (so that |K| < k) only those
diffracted waves making small angles with the incident direction carry any appreciable flux.
Both I'g(K) and I'y(K) are very nearly equal to £ for these waves, and our reciprocity relation
in this forward scattering approximation becomes:

TH(K) = TS (—K—G). (2.13)

The reciprocity relation (2.12) is equivalent to the more familiar form used by Pogany &
Turner (1968). Although they were able to make some remarks about the diffuse and inelastically
scattered electrons (which are not considered here), they do not systematically study the effects of

the space group symmetry of the crystal. Our present model, however, has been chosen to facilitate
this task.
(b) Effect of the space group symmetry

If the potential U(r) is invariant under an operation {R|v}, then {R|v} ¥ will be a solution of
the Schrédinger equation (2.2). However, not all space group symmetry operations of Ug(r)
leave U(r) unchanged. The presence of the surfaces means that we must have transformations
(2.4) with 2’ = zor 2/ = —z+¢if U(r) is to remain unchanged.

If the former condition applies, only symmetry operators which leave the surfaces of the slab
unchanged have to be considered. If # is a ‘rotation’ in this plane about the z axis and V is a
translation also in the plane, we may partition the Seitz symbol so that

R= (%%) and v = (V,0). (2.14)
In the latter case, the operators have to be partitioned as
R = (—'%Z- _il) and v = (V1) (2.15)

We have used the primes, here and throughout§ 2, toindicate that the crystal hasbeen turned over.
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ELECTRON DIFFRACTION SYMMETRIES 175

The restrictions imposed by (2.14) and (2.15) must be considered carefully. First, symmetry
operations are defined in terms of latfice directions, whereas the axis z is referred to a reciprocal
lattice direction. In general a lattice direction will not be parallel to a reciprocal lattice direction,
although there are special directions which are parallel to both a lattice vector and a reciprocal
lattice vector. In particular, if the z axis is a rotation axis (of order > 2) or is perpendicular to
a mirror plane, then this axis will be both a lattice and a reciprocal lattice direction and the condi-
tion of the symmetric Laue case is satisfied (Fukuhara 1966). However, if a diad axis or mirror
normal lies in the surface plane, or if the only non-trivial symmetry operation satisfying (2.14)
and (2.15) is an inversion centre, the surface normal s need not be parallel to a lattice direction.
In this case we shall assume that no significant error will be introduced by using a zone axis u,
which is very nearly parallel to s, to designate the direction of z. This will be advantageous later
when we make the projection approximation and consider only diffraction processes related to the
zero layer of the reciprocal lattice for which g-u is zero (Howie 1966; Fukuhara 1966; Pogany &
Turner 1968; Berry 1971).

Secondly, according to (2.14) the rotation R can only be associated with a translation v in the
surface plane. Certainly, if the space group of the parent crystal is symmorphic (see, for example,
Zachariasen 1945) we can always choose the translations v (= ) in this plane, but if it is asym-
morphic, this will not always be so: for example, screw axes and glide planes with associated
translations not parallel to the surfaces are here excluded. Similarly, R’ must be an inversion axis
parallel to z, or a diad or screw diad axis perpendicular to z, or a mirror or glide plane also
perpendicular to z. Inversion axes have no associated fractional lattice translations, so the
second part of (2.15) means that the thickness # must be the z-component of a lattice translation.
This is also the case if R is a twofold operation normal to z which does not have an associated
fractional translation along the z axis. However, as Goodman points out (Goodman 1974),
a mirror perpendicular to z is a possible symmetry operation even if # is not the z-component of
a lattice translation. The important point is only that the slab of crystal should be invariant under
the operation considered; for example, the mid-plane of the crystal can be a mirror or glide plane,
or there can be a twofold rotation axis in the mid-plane. Because of these complications, we shall
assume that {R|v} and {R’|v'} as given by (2.14) and (2.15) are symmetry operations of the crystal
slab and focus our attention on the point group operations R and R’. The partitioned form of these
operators makes it clear (see for instance the comments in the preface of Shubnikov 1964) that
the thirty-one distinct point groups constructed from R and R’ will be isomorphic to the crystallo-
graphic point groups of two dimensional plane figures (see Shubnikov 1964 or Megaw 1973 for
instance).

Applying an operator {R|v} given by (2.14) to the wave function ¥§", we find for z < 0 that,

elZK: V{ Rl v} tpl((+)( r) == elZK"R oil'o(ZK)2

3 (R (K) e716°Y) IO Re-irgas (2.16)

Since the outgoing solution of (2.2) with an incident plane wave is unique, comparison of (2.16)
and (2.7) shows that:

RP(K) = %6 VRGL(ZK) (2.17)
and that PiR(r) = 2K VIR| v} WD (). (2.18)
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176 B.F. BUXTON AND OTHERS

Equation (2.18) shows that ¥§”(r) behaves in an analogous way to a non-degenerate Bloch
function of a three dimensionally infinite crystal. Moreover, using (2.18) and the expressions for
PP (r) and PH(r) in the region z > ¢, we see that

TP (K) = 29V THAZK). (2.19)

In the same way, we can use an operator {R’|v'} given by (2.15), and deduce that
Yok(r) = eZEV e—AN@RHR! | 9L YD (1), (2.20)
and that, TH(K) = e# GV laW)-TeEN TCA (R'K). (2.21)

Combining this with the reciprocity theorem (2.13), we see that for near forward scattering:
T(G+)(K) = el G V' pl(2K- G+GE/2k Tg&( _ .@'(K+ G)) (2.22)

Equations (2.19) and (2.22) together express the effect of the various symmetry operations of
the crystal slab on the diffracted waves.

(¢) The thirty-one diffraction groups

We have already remarked that thirty-one Shubnikov plane crystallographic point groups
can be constructed from the sets of operators {R} and {R'} given by (2.14) and (2.15). We shall
now show how these operators give rise to thirty-one isomorphic groups of symmetry operators
on the diffracted waves. First, it is convenient to remove the translational part from the argument
of the transmission coefficient on the right of (2.22) by referring all orientations with respect to

the Bragg positions, that is, we define
K=-}G+0. (2.23)

Furthermore, a very long way beyond the crystal slab (or in the back focal plane of the objective
lens of a microscope) the transmitted diffracted waves are well separated and each carries a

current proportioned to | T¢”(K)|2 We therefore define /(G, Q) as the intensity in the Gth
diffracted beam at an orientation Q from the G Bragg position, so that,

I1(G,0Q) =|T(-1G+ Q)2 (2.24)
Our symmetry relations (2.19) and (2.22) then mean that:
I(G,Q) =I(%G,Z0Q) = (#'G, —#'Q). (2.25)

Introducing a new symmetry operator {£, + 1} which acts on a function (G, Q) so that,
{'@, * 1}F<G, O) = F('@_IG, i‘@_'lO): (2'26)

(cf. the action of the Seitz operator, equation (2.5)) it is not hard to show from the point group
properties of {R} and {R'} (or indeed {#} and {Z#'}) that operators {Z, 1} and {#’, — 1} can be used
to construct thirty-one groups which are isomorphic to the Shubnikov groups mentioned above.
This task is much simplified by noting that the symmetry of the specimen slab must itself be one
of the 31 point groups of diperiodic plane figures (§ 2 (5)) which are isomorphic to the Shubnikov
groups. From the form of (2.26) we now see that the possible symmetry properties of the diffracted
wave intensities as represented by (2.25), must be one of these thirty-one groups, here called
diffraction groups. In table 1 we present a pictorial representation of the diffracted wave intensities
and in § 3, a geometrical interpretation of the operators {Z, 1} and {#’, — 1}. Since this interpreta-
tion is not the same as a colour change, we introduce a new notation for these operations on the
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diffracted wave intensities, which however preserves the isomorphism with the Shubnikov groups.
Table 3 also contains a list of the diffraction groups and details of how they are related, via condi-
tions (2.14) and (2.15), to the point groups of the parent crystal.

The diffraction group is determined in any particular case by requiring that the intensity
I(G, Q) be invariant under a// operations of the group for a general G and Q. For special choices
of G and Q the symmetry may of course appear different from that of the diffraction group. Ifit
happens that a particular G vector is chosen for which, say, ZG or #'G is identically G itself for
some operator Z or #’, then (2.25) shows that there is an internal symmetry relation concerning
this diffracted beam alone. The direct (zero) beam always behaves in this anomalous way: for
instance the presence of an inversion centre of symmetry in the zero beam will result from (for
example) either a diad axis parallel to z (an Z operation) or by a mirror perpendicular to z (an
' operation) (cf. Goodman & Steeds 1975).

(d) The projection approximation and systematic diffraction

Although the z dependehce of the potential U(r) can give rise to dramatic and useful effects
such as upper layer lines (Rackham, Jones & Steeds 1974), it often happens when z is parallel
to a prominent zone axis «, and K is small, that all the observable features of the diffraction are
due to interactions related to the zero layer of the reciprocal lattice. In this case, we consider the
projected potential Uq(R), obtained by averaging Us(r) over z (Berry 1971) so that,

Ue(R) = X U ek (2.27)
o8

where the vectors g, perpendicular to # form the zero layer of the reciprocal lattice. The space
group symmetry of U(r) means that we can write,

Usyg = Upgemis 7, (2.28)

where the set of ‘rotations’ {Z} includes the ‘rotations’ {#} and {#'} defined by (2.14) and (2.15),
and the translations {¥} similarly include all the {V'} and {V’}. Ignoring accidental symmetries,
(2.28) shows that the set of operators {#|V} is the two dimensional space group of Us(R). The
scattering potential in (2.2) should now be replaced by U(r) which is equal to Us(R) k(z). This
is invariant under {.@7} followed by a mirror reflexion in the plane z = }¢, as well as under
{Z|V}alone. Thediffraction group is therefore composed of the sets of operators {#,1}and{Z, — 1),
or, equivalently the direct product {{#, 1}®{&, + 1}} (€is the two dimensional identity operator),
which is isomorphic to one of the ten two dimensional grey point groups.

The fact that there are only ten distinct diffraction groups in this approximation reflects the
considerable loss of information when the upper layer interactions are not observed. However,
the combination of observations from a number of zone axes allows all but two (4 and 4) of the
point group symmetries of the infinite crystal to be distinguished. Also, since the symmetry
operation {&, — 1} is always present in these direct product diffraction groups (hereafter referred
to as projection diffraction groups),

I1(G, Q) =I(G, - Q), (2.29)

so that the diffracted wave intensities always possess inversion symmetry about the Bragg
position, as noted by Pogany & Turner (1968).

Similarly, under systematic diffracting conditions when only interactions associated with one
row of reciprocal vectors {ng}, parallel to the x axis (say), are important, a one dimensional
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178 B.F.BUXTON AND OTHERS

potential Tg(x) analogous to Ue(R) can be defined (Berry 1971). U(r) is again Ue(x) k(z) and
there remain only two diffraction groups (1z and 21y of table 1) which are isomorphic to the two
one dimensional grey point groups. Only the component g, of Q parallel to « is significant, so
that if Uy(x) has an inversion centre we can write the symmetry properties as

I(ﬂg, qa:) = I(ﬂg, ~qvc) = I(—Tlg, '—qw)3 (2'30)

while in the absence of an inversion centre, only the first of these relations holds.

(e) Symmetry of convergent beam patterns

The symmetry of dark field patterns which are an essential part of the diffraction group can
only be observed when the incident beam varies over a range including the relevant Bragg
orientation. These large angular ranges are frequently obtained in bend contour work (Steeds
etal. 1973). However, the convergent beam technique, which is useful for less buckled specimens,
only allows a small range of incident orientations if different diffraction orders are not to overlap
(figure 2). The entire region near a zone axis can of course be mapped out by using a series of
these patterns taken by successively tilting the incident convergent beam (Goodman 1974) and
the diffraction group inferred from the composite pattern.

However, if the mean incident direction is parallel to the z axis the normal convergent beam
pattern still contains useful symmetry information. Electrons incident from different directions
in the convergent beam are normally incoherent so the intensity observed in the convergent
beam pattern in the back focal plane of the objective can be written as (see figure 2)

I(Q) = const. X | T§P(Q - G)|2F(|Q - GJ), (2.31)
G

where F(| Q — G|) represents the incident electron intensity from a direction Q — G.
i
0
/

G |

Y

F1gUrE 2. Schematic arrangement for the formation of a convergent beam pattern showing how
the orientation vectors are defined.

For a conventional non-overlapping convergent beam pattern, F(|Q'|) is zero for large | Q’| so
that only one diffracted wave contributes to the intensity /(Q) at any Q. From (2.19), it follows
that I(Q) is invariant under any of the rotation operations #, but it is not invariant under the
operations #’ which are associated with turning the crystal slab over. The symmetry of the whole
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convergent beam pattern is therefore one of the ten two dimensional point groups. This point
group is easily obtained from the diffraction group by removing all operations associated with
turning the slab over, as shown in table 2. In the projection approximation the symmetry of the
convergent beam pattern is just the point group {Z} of the projected potential.

The zero beam of the convergent beam pattern should be treated separately, however
(Goodman 19%74), because this often shows an internal symmetry which is higher than that of the
whole pattern. Assuming that the objective aperture is chosen so that only the zero beam is
observed, the convergent beam pattern (2.31) becomes

1(Q) = const. | T{P(Q)|2F(|Q)). (2.32)

Inspection of (2.19) and (2.22) now shows that the zero beam pattern is invariant under the
rotations {#} and {#'}, and it is easy to infer the zero beam point group symmetry from the
diffraction group (see table 2). In particular, in the projection approximation,

T§9(Q) = TgV(- Q) (2.33)

so that the zero beam pattern always possesses an inversion centre, even if the point group of the
whole pattern does not (Goodman 1974).

Finally, we emphasize some of the assumptions used in the above discussion. First, it was
assumed that the convergent beam illumination was symmetric about the z direction. If tilted
illumination is used, centred on Q. (say), the incident distribution F(|Q —G|) in (2.81) is
replaced by F(|Q — G — Q.|) and the intensity I, (Q) of this convergent beam pattern is equal
to the intensity o (ZQ) of the convergent beam pattern obtained with the illuminating cone
centred on ZQ.. Indeed, if the illuminating cone is tilted far enough towards the Bragg position
for a particular dark field, it is often possible to deduce from this dark field convergent beam disk
the full diffraction group symmetry. Secondly, it has been assumed that the incident intensity
distribution F(|Q’|) is symmetric, but this will not be the case if the probe forming lens system
introduces appreciable astigmatism or coma.

(f) Symmetry of lattice images
From equation (2.18) of § 2 (4) we see that, for electrons incident normally from above, the
wave function Y{7(R,t) on the exit face of the crystal slab is invariant under the symmetry
operations {Z|V} which transform Y§"(R,t) to Y{(Z (R -V),t). This indicates that lattice
images provide information about the space group of the parent crystal. However, we must include
some of the effects of the principal aberrations of the electron lenses, in particular the objective
“lens, and also any defocus. The object is the wave function Y{" (R, t) of the electrons on the exit
face of the slab, which may be obtained from (2.8), so that the image wave function @,(P, 4)
obtained with an overfocus 4 is given by (see, for example, Lenz 1971)

@, (P, A) = 3, TE(0) elF6Ot e~ G2 D (| G|) ei6 P/, (2.34)
G

Here, D(|G]) is the aperture function for an objective aperture symmetrically placed about the
optic axis which coincides with the z axis. M is the magnification of the image and, if spherical
aberration and axial astigmatism are included (Lenz 1971)

W(G, A) =£%G4+%GZ—%(G§(—G§,), (2.35)

16 Vol. 281. A.
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180 B.F.BUXTON AND OTHERS

where ¢g is the third order spherical aberration coefficient and ¢, is the coefficient of astigmatism
referred to principal axes X and Y of the electron optical system.

Because of the magnification factor M, we now consider the action of an operator {Z| MV} on
the image wave function @y(P, 4). This is transformed into @y(Z-1(P—-MV), A), so it is easily
seen from (2.19) and (2.34) that the image wavefunction @y( P, 4) remains unchanged, if there is
no astigmatism. The lattice image |@y( P, 4) |2 therefore possesses the symmetry of the space group
operations {Z|V} of the parent crystal. If the projection approximation is valid, this is just the
space group {Z|V } of the projected potential Us(R). (An example of this may be found in Iijima
(1971), while a table of some projected space groups can be found in Buerger (1960), ch. 11.) We
emphasize that this is independent of spherical aberration and defocus, but depends on a sym-
metrically placed aperture and on the specimen slab being normal to the optic axis. Moreover,
for more general apertures which admit only a few diffracted beams, it is possible that @4(P, A4)
will show a higher symmetry than Y§”(R,¢) (figure 34), or a lower symmetry as in figure 3.
If the illumination is tilted, it turns out that the image wavefunction @ (P, 4) behaves similarly
to the object wavefunction Y{V(R,¢) as in (2.18). There are also similar symmetry relations
involving the operations {#'|V'} related to the {R'|v'} of (2.15), but as in (2.20), these involve
turning the slab over.

(a) Ay (b) y

Ficure 3. The large circle represents the aperture in the back focal plane of the objective lens, and it is assumed
that Y§t'(R, t) remains unchanged on reflexion in the y axis, i.e. ¥{P(x, y, ) = P{P(~x, y, t), but
PP x, y,t) # PSP (x, —y,t). In (a) Polx,y, ) = Do(—x,y,4) = Dy(x, —y, A) and we obviously have no
information on symmetry properties in the y direction, whereas in (b) the former symmetry is missing.

Finally, under stigmatic imaging conditions, most of the symmetry properties of P§"(R, ) will
not apply to @,(P, 4) because the phase change —¢,(G% — G¥%)/2k will not be invariant under
most operations defined with respect to axes x and y of the crystal, because these will notin general
be parallel to the axes X and Y of the optical system. In general, @,( P, 4) will only be invariant
under a twofold rotation about the z axis, when

2=("y 1)

3. A GRAPHICAL METHOD

The way in which the specimen symmetry determines the symmetry in electron diffraction
can readily be shown by a simple graphical method. In fact, the 31 diffraction groups were first
determined by this method; the analysis of § 2 was used subsequently to confirm the results and
explore their relations with other groups.
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ELECTRON DIFFRACTION SYMMETRIES 181

Previous workers looking for symmetry relations in diffraction have also used graphical
methods but usually (e.g. figure 1, and also Pogany & Turner 1968) have employed ray diagrams
projected onto a plane containing the incident beam. Such diagrams are only convenient in
certain very simple cases. The advances which we report, have arisen, in no small measure, from
the realization that the symmetry relations in diffraction are more readily explored by means of
a stereographic projection in which the zone axis of interest is taken at the centre of the circle.
Thus a single direct beam (as when no specimen is present or when diffracted beams are not
considered) is illustrated in figure 4, where the cross marks the centre of the circle and hence
represents the direction of the zone axis. The dot represents the ingoing ray and the circle the
direction of the outgoing ray. In figure 54 an additional dark-field beam is represented. In this
diagram and throughout we assume that all the angles are small, that is, we take the diagrams
to represent only small central regions of the stereographic projections. The ingoing and direct
outgoing beams are unchanged but the direction of a second outgoing beam is represented by
a circle displaced by twice the Bragg angle, in a direction parallel to the diffraction vector G from
the first. We find it convenient to identify this displacement by a vector G’ and to draw it from
the centre of the circle as in figure 5 b; then the ingoing beam and the outgoing dark-field beam
are symmetrical about the mid-point of G”.

FIGURE 4. Stereographic projection of the directions of the ingoing and outgoing electron beams.

(a). (b). (C‘
FIGURE 5. Stereographic projection: as figure 4 with the addition of a single diffracted beam.

The symmetries we are looking for are revealed as relations between the intensities of outgoing
beams when we assume that the incident intensity is independent of orientation as in §2 (a).
(That is, we take all the incident beams to have unit intensity and look for specific orientations
in which sets of outgoing beams have the same intensity.)

In order to simplify the diagrams it is convenient to consider dark- and bright-field images
separately so that we usually put in only one emergent ray at a time and figure 5¢ becomes
a standard starting point for determining dark-field symmetries (figure 4 is the equivalent for
bright field).

To show how the method works we first consider a simple example: let the specimen possess
a mirror plane containing the zone axis and consider a pair of Bragg reflexions which are related
by this mirror operation (figures 64, 6), then if we introduce incident beams, also in mirror
related positions, we get the result given in figures 6 ¢, d. Clearly the two outgoing rays have equal

intensities (otherwise the mirror symmetry is destroyed). Hence in the dark-field images of mirror
16-2
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182 B.F.BUXTON AND OTHERS

related diffracted beams there are points which, for mirror related incident beams, must have
equal intensity due to the symmetry.

We have now established the result we are looking for but we need both to examine what it
means and to find a more convenient and readily interpretable way of representing it. If a dark-
field image has internal symmetry the centre of the pattern is at the Bragg position which is
represented by a small circle in figure 7 a; cf. §2 (¢). The Bragg condition is fulfilled anywhere
along a line perpendicular to G through this point and the dark-field intensity will be concen-
trated (if large enough angles are considered) along such a line. Therefore, the maximum sym-
metry of a dark-field image is the two dimensional crystallographic point group 2 mm with the
mirror planes parallel and perpendicular to G.

w@ (b@ (C@D (d)@

Ficure 6. Derivation of the dark-field symmetry relation for a specimen with a vertical mirror.

(@) () (c) (d)

FIGURE 7. Stereograms showing (a) the centre of symmetry of the dark-field pattern and
(), (¢) and (d) the development of the representation of the pattern symmetries.

Because the symmetry of the dark-field is centred on the point shown in figure 74 we can
conveniently represent the dark-field image as occurring within a circle centred on this point
(figure 7b). Then the result we have deduced for the mirror plane (figures 6¢,d) is represented
by figure 7¢ which is simplified to the diagram shown in 7d. The 31 diffraction groups (§2 (c))
are tabulated in this form in table 1. We have dropped the dots once the final result has been
obtained because we are no longer interested in the incident beam. However, we have included
in figure 7d a line above the centre, because if G is parallel to it (or to any of the similar lines in
table 1) a special result occurs. The diagram illustrates the relation only for a general G and it
would be too complicated to illustrate both special and general results. However, if the initial G
were taken parallel to the mirror plane, instead of obtaining a relation between different dark-
field patterns, the result would be a mirror parallel to G within that dark-field pattern. This
result can be derived from following the argument illustrated in figure 6 or more quickly, from
the general result shown in figure 7 d. In fact, all special results are easily derived from the general
cases given in table 1.

Two further ideas are raised if we now consider a mirror plane perpendicular to the zone axis.
Figure 8a is the normal starting point, figure 84 is the result of adding the mirror operation and
figure 8¢ represents the final result. We have jumped a step: in figure 8 5 we have one downward
going ray (the original one from 8 2) and one upward going ray (the one generated by the mirror
operation). However we may use reciprocity to show that we can reverse this ray (see § 2 (2) and
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ELECTRON DIFFRACTION SYMMETRIES 183

references made there). In fact the reciprocity theorem allows us to ignore the upward- or
downward-going character of a ray and no distinguishing symbol is required. This is true
regardless of what other beams are involved.

The second point of interest which arises from this example is that while the diagram of figure 8¢
has no overall symmetry (point group: 1) there is diad symmetry within each dark-field order
(the diagram shows only one dark-field order because each dark-field image is unrelated to all the
others but every dark-field image hasits own internal twofold axis). We wish to develop a notation
which allows us to represent the full symmetry including this internal symmetry of the dark-field
orders. Either by considering each possible case in turn, or by using the group theoretical argu-
ments given in previous sections, it can be shown that all the symmetries of the full pattern (dark-
and bright-field images) can be described by means of a set of operations which includes only
the operations of the two dimensional point groups and the same operations in combination with
the additional special operator which rotates each dark-field through = about its own centre. We
have designated the latter operator by the subscript R. Hence a horizontal mirror results in
a diffraction group 1y (figure 8¢) and a vertical mirror in a diffraction group m (figure 74d).

() (5) (©
@ ° +

Ficure 8. Development of the dark-field relation for a horizontal mirror.

| (@) {b) ©
®+
&)

Ficure 9. Development of the dark-field relation for a specimen with an inversion centre.

A particularly important case is that of a specimen with an inversion centre. Figure 9 illustrates
the derivation and the result which reveals that in any crystal with an inversion centre each dark-
field image (for a reflexion G) is related to the dark-field image for — G by the operator 2y
illustrated in figure 9¢. If this relation is found to be absent between + G images then the
crystal cannot be centred; it will be seen that the operation 2y consists in rotating through =
about the centre of the pattern and also rotating each dark-field pattern through = about its
own centre.

In this graphical approach, the 31 diffraction groups are generated by applying the method
Jjust described to every orientation of each of the 32 three dimensional point groups. Alternatively
it has been noted (§ 2 (5)) that the specimen (as distinct from the infinite crystal) can only have
one of the point groups of diperiodic plane figures and the method need only be applied to them.
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TABLE 1. GRAPHICAL REPRESENTATION OF THE DIFFRACTION GROUPS

B.F.BUXTON AND OTHERS
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TABLE 1 (cont.)
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4. THE DIFFRACTION GROUPS

We now present the results of carrying through the operations just described. Table 1 gives the
graphical representation of the 31 diffraction groups. As already discussed each diagram repre-
sents the symmetry relations between general dark-field orders. The radial lines represent direc-
tions in which special relations hold, that is, when either the symmetry within a dark-field is
increased or when the symmetry between the patterns for G and — G is increased.

g TABLE 2. PATTERN SYMMETRIES

(Where a dash appears in column 7, the special symmetries can be deduced from columns 5 and 6

/
A

J
— of this table (or from table 1).)
§ S dark field +G projection
— diffraction bright whole — A N . A N diffraction
2 L group field pattern general special general special group
e
1 1 1 1 none 1 none
E 8 1z 2 1 2 none 1 none} L
~w 2 2 2 1 none 2 nonel
25 1 1 1 none 25 none 215
3‘2 21y 2 2 2 none 21, noneJ
T 9 my m 1 1 m 1 myg ]‘
n_l:) . m m m 1 m 1 m J mig,
(@) <0 mly 2mm m 2 2mm 1 milg
(7]
9 (2 2mpmy 2mm 2 1 m 2 —
= é 2mm 2mm 2mm 1 m 2 —
E = 2xmmy m m 1 m 2r — Zmmly
2mm1y 2mm 2mm 2 2mm 21, —
4 4 4 1 none 2 nonel
4p 4 2 1 none 2 none 41y
41, 4 4 2 none 21, noneJ
4mympy 4mm 4 1 m 2 —
4mm 4mm 4mm 1 m 2 — 4 1
4,mmy, 4mm 2mm 1 m 2 — i
4mmly 4mm 4mm 2 2mm 21, e
3 3 3 1 none 1 none} 31
31y 6 3 2 none 1 none B
3my 3m 3 1 m 1 my 1
4 3m 3m 3m 1 m 1 m J 3mly
P g 3ml 6mm 3m 2 2mm 1 ml
< R R
~J
) ) 6 6 6 1 none 2 nonel
< 6 3 3 1 none 25 none 61y,
— > 61, 6 6 2 none 21, noneJ
O ~ 6mpmyg 6mm 6 1 m 2 —
e = 6mm 6mm 6mm 1 m 2 —
e 6mm1y
QO 6pmmp 3m 3m 1 m 2x —
I O 6mmiy 6mm 6mm 2 2mm 21, e
=w

Table 2 lists the diffraction groups and gives information on the special cases for each one.
The second column gives the two dimensional point group symmetry of the bright field image
(either bend-contour or convergent-beam image) while the third gives that of the whole pattern.
The whole-pattern symmetry is the two dimensional point-group symmetry of the patterns given
in table 1; this is useful because a single convergent beam pattern (taken symmetrically about
the zone axis and including dark-field orders) has this symmetry (the dark-field images are off
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ELECTRON DIFFRACTION SYMMETRIES 187

centre and lie in a region wholly outside the centres of their internal symmetry); several exposures
may be required to reveal the full diffraction symmetry. The next two columns of table 2 give the
symmetry within each dark field order: the first gives the presence or absence of the internal
twofold axis (this is obvious from table 1 but it is convenient to bring it together with the other
information in this table), the second gives the internal symmetry of dark-field images corre-
sponding to images formed in reflexions parallel to some or all of the radial lines of table 1. The
next two columns of the table give the symmetry relation between the dark-field images using
reflexions G and — G; the first of the two columns gives the general relation (which may be
observed directly from table 1), while the second gives the additional relations which apply
when G is parallel to some or all of the radial lines in table 1. These relations between G and — G
dark-field images are given by using the appropriate diffraction group symbols. The diagrams
corresponding to 2, 2y and 21y are the same as those in table 1, diagrams for m, my and miy
are given in figure 10 since they are slightly different from the corresponding diagrams in table 1
where the dark-field orders are not + G, but only mirror related.

D )

+ + +
® @ &

Ficure 10. Diagrams which represent certain relations in the special case when they refer to dark-field images
for + G; these relations in the general case are given in table 1.

The value of tabulating the particular relations in table 2 is that experimentally, especially
where bend contours rather than convergent beam patterns are observed, it is frequently easy to
establish the internal symmetry of bright- and dark-field orders and the relation between + G
images and hence determine the diffraction group whereas it would be laborious and difficult to
explore the full symmetry relations of a general dark-field order.

In table 3 the interrelation between the specimen point group and the diffraction groups is
given. This table may be used to determine the crystal point group from observation of zone axis
patterns; it also shows which diffraction groups arise from each point group but that is more
conveniently obtained from table 4. The latter lists, against each point group, the diffraction
groups to which it can give rise and the zone axis directions which produce them.

When the projection approximation is valid the specimen behaves as though it has only two
dimensional periodicity. It therefore must contain a horizontal mirror (cf. § 2 (4)). Examination
of specific cases reveals that no further symmetry elements are introduced, except accidentally.
If we now consider how this symmetry change effects the results of tables 1-4 we find that the
31 diffraction groups are reduced to the ten projection diffraction groups (§ 2 (d)). The relation
of the latter to the diffraction groups is somewhat analogous to the relation between the Laue
groups and the three dimensional point groups in X-ray work. The way in which the diffraction
groups and projection diffraction groups are related is given in table 2; this reveals the reason
for the grouping of the items in tables 1 and 2.

In this case it is possible to derive the point group of the crystal (except for the previously
mentioned ambiguity between 4 and 4: § 2 (d)) by determining the projection diffraction group

17 Vol. 281. A.
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188 B.F.BUXTON AND OTHERS

of more than one zone axis and using table 3.7.1 of the International Tables for X-Ray Crystallo~
graphy’ (1965) which tabulates the point group projection symmetries. Past attempts, using
conventional electron diffraction patterns, to determine these symmetries have yielded unreliable
results. The projection diffraction groups can be obtained from the two dimensional point groups
appearing in the above table 3.7.1 by addition of the 1y operation. As pointed out by Steeds
(1974), bright field patterns alone give only the crystal Laue group. We would draw attention
to the fact that it is normally possible to determine experimentally whether or not the projection
approximation applies and sometimes, by changing the conditions, to go from a situation in
which it holds to one in which it does not. It is usually difficult to observe upper layer effects in
bend contour patterns but equivalent information can be obtained by observing the z.a.p. (zone
axis pattern) over a sufficiently large angular range: often the centre of the pattern gives projec-
tion approximation symmetry, while far from the centre the symmetry corresponding to the
diffraction group may be obtained.

In summary, if the projection approximation applies then in tables 1-4 the diffraction groups
are replaced by the corresponding projection diffraction groups which may be found from the
last column of table 2. '

TABLE 3. RELATION BETWEEN THE DIFFRACTION GROUPS AND THE
CRYSTAL POINT GROUPS

6mmlg
3mly

6mm
6mypmp,

615
ETI

6p mmy,

3m

3my

br

4mmlg
4,mmpg

4mm

4mpmyg
41y

2mmiy

2pmmy

2mpmpg
milg

mp
20p
2r

g

2/m
223
mm?2
mmm
4/m
4/mmm
32

3m
3m
6
6
6/m
622
6mm
6m2
6/mmm
23
m3
432
m
m3m
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TABLE 4. ZONE AXIS SYMMETRIES

point group (111) {(100) (110) (uvo) (uuw) [uvw]
m3m 6ymmp 4mmily 2mmly 2pmmy 2ymmy 2x
43m 3m 4,mmy mly my m 1
432 3mpy 4mpmy 2mpmy myg mg 1
point group (111) (100) (uvo) [uvw]
m3 6y, 2mmly 2pmmy 2y
23 3 2mpmy my 1
—_ point group  [0001] (1120) (1700) [uv.0] [uu.w] [uii. w] [uv.w]
< — 6/mmm  6mml, 2mmly 2mmly 2pmmy 2;mmy 2,mmy 2z
> - fm2 3mly mly 2mm m my m 1
O ) 6mm 6mm mly mly my m m 1
Qf( e 622 6mpmpg 2mymp 2mymy mg my my 1
=9
T 8 point group [0001] [uv.o] [uv. w]
= 6/m 61y 2pmmy 2:
— 6 31, m 1
5 .4 6 6 my, 1
=0
E 5 point group [0001] (1120) [ui. w] [uv.w]
w
8 5) ©) 3m 6xmmp 21, 2,mmp 2z
9 Z 3m 3m 1y m 1
= 32 3my, 2 my, 1
Ta
o= .
point group [0001] [uv.w]
3 6y 2
3 3 1
point group [001] {(100) (110) [uow] [uvo] [uuw] [uvw]
4/mmm  4mmly 2mmly 2mmly 2pmmy ~ 2gmmy 2.mmy 2z
42m 4 mmy 2mymy mly my my m 1
4mm 4mm mlg mly m mpy m 1
422 4mpmy 2mpmy 2mpmy mpg mpg my 1
point group [001] [uvo] [uvw]
4/m 41, 2pmmy 2
_d Z 4R mpg 1
“<B 4 4 mg 1
::J point group [001] (100) [uow] [uvo] [uvw]
>-l >" mmm 2mmly 2mmly 2pmmp 2pmmy, 2n
O =~ mm2 2mm mly m my 1
o E 222 2mpmy 2mpmy my my 1
E 8 point group [010] [uow] [uvw]
2/m 21 2pmmyg 2z
%0} . R
= m 1y m 1
3z 2 2 my 1
O
T g point group . [urw]
-9
226 1 %
8v 1 1
= Z
Ta
-y
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5. EXPERIMENTAL RESULTS

The results derived and tabulated in the previous sections may be applied to either convergent
beam or bend contour patterns. However, there are a number of ways in which the experiments
deviate from the simplicity of the model assumed in § 2. The normal to the specimen may not
coincide with the zone axis; inelastically or diffusely scattered electrons may contribute to the
patterns and the specimens may have complicated shapes. In addition, when working with bend
contour patterns, allowance must generally be made for irregularities in the specimen curvature.
Although this might seem to be a serious handicap to contour work we have found that it is
possible to detect quite subtle differences of symmetry by relying on the large angular view in
contour patterns and the eye’s ability at pattern recognition.

The question of the visibility of pattern features which distinguish the various point groups has
not so far been raised. We now intend to examine this point by experimental results obtained
from convergent beam work on specimens of GaAs and Ge. This is a sensitive test because the
crystal potential of GaAs is very similar to that of Ge, but has a small antisymmetric part. The
specimens were prepared from carefully oriented sections of bulk material by ion or chemical
etching and had wedge angles which were generally less than 10°.

In order to decide which tables to refer to it is necessary to ascertain whether upper layer effects
are playing a significant réle in the pattern symmetries. In the case of thick specimens the small
angular width of the upper layer lines generally makes it a simple matter to arrive at a firm con-
clusion. In thin crystals the upper layer effects often take the form of broad spots which are similar
to the spot patterns arising from zero layer interactions. To discover the origin of these spots it is
necessary to change the microscope operating voltage by approximately 5kV (a larger change
in voltage might alter the zero layer diffraction). If the pattern is scarcely affected by such small
voltage changes then upper layer effects are unimportant.

A study of table 2 makes it clear that it is profitable, when trying to identify the point group of
a crystalline specimen to look at zone axes of high symmetry. There are just four cases where a
unique conclusion may be drawn from one zone axis convergent beam pattern. For example,
there are seven different pattern symmetries for fourfold axes and in one case (4g) it is only
necessary to inspect the whole pattern and bright field symmetries to identify uniquely the crystal
point group. In two further cases (4mgmy, 4gmmy) it is only necessary to distinguish a cubic
from a tetragonal crystal to complete the identification. The 4 and 41y patterns may be dis-
tinguished by the internal symmetry of any one dark-field pattern. A table, which facilitates the
systematic use of patterns in this way, for all the diffraction groups has been given by Buxton &
Eades (1976). The {100) pattern of GaAs (point group 43m) has only 2mm whole pattern sym-
metry and it may, therefore, be distinguished from the Ge (point group m3m) pattern. This
result is clearly displayed by the four {020} disks in figure 11, plate 1. Although there is no
question about the symmetry of this pattern it should be pointed out that the specimen thickness
had to be carefully chosen. For very thin specimens (< 40nm) there was insufficient detail in
the {020} disks to decide the pattern symmetry, while for very thick specimens (2 200nm) the
{020} disks became invisible against the diffuse background, changing the symmetry to 4mm.
The thickness dependence of this result is apparently a consequence of the weak {020} reflexion
in GaAs since the pattern from a thick specimen of InP (figure 12, plate 1) retains 2mm
symmetry.

For hexagonal and trigonal crystals it is most valuable to study the [0001] patterns. Each
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Ficure 11. GaAs (100) axial convergent beam pattern from a {100} foil; the micrograph was taken at a nominal
operating voltage of 60 kV with the specimen cooled to a temperature of approximately 90 K. {020} disks
are rather weak and adjoin the central disk. In this and subsequent figures any discrepancy between the
pattern and disk centres is due to slight misalignment of the crystal.

\m m/
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Ficure 12. InP (100) axial convergent beam pattern from a {100} foil; the micrograph was taken at a nominal
operating voltage of 80 kV with the specimen cooled to a temperature of approximately 90 K. The {020}
disks lie closest to the central disk. (Facing p. 190)
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Ficure 13. (110) axial convergent beam patterns of Ge and GaAs taken at 100 kV. (a) and (¢) are from Ge {111}
foils of different thickness; (b) and (d) are from GaAs {110} foils of approximately the same thickness as used
in (a) and (¢). The + {002} disks lie on the horizental lines either side of the central disk. The central disk
of (a) is probably distorted by thickness change within the illuminated area of the specimen.

direct di di
—fose}  beam  —{oo2}  beam  +{o02} beam  +002}

SOCIETY

OF

Ficure 14. GaAs (110) convergent beam patterns from a {110} foil taken at an operating voltage of 100 kV.
There is axial illumination in (4); in () and (¢) the image of the aperture has been shifted to the right and
left respectively. The centres of the zero order and + {002} disks are marked by the intersection of the solid
vertical lines with the horizontal line. The dashed lines intersect the horizontal line at the + {002} Bragg
positions.
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mirror line

mirror line

Ficure 15. Si (211) axial convergent beam pattern from a {111} foil taken at an operating voltage of approximately
96.5 kV. The broken horizontal line would be a mirror line in the projection approximation.

— {111} zero beam + {111}

Ficure 16. Multiple dark-field image of gold (211) showing out-of-focus bend contours in each disk. The {111}
specimen has been tilted through 20° about the (011) direction perpendicular to the line of the disks to
obtain this pattern. Tables 4 and 2 predict 2 mm symmetry for the pattern but the tilted surfaces destroy the
mirror line parallel to the tilt axis (M. D. Shannon, unpublished work).
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hexagonal point group has a unique [0001] pattern symmetry, while the symmetry of each
trigonal [0001] pattern is shared with the (111) axis of just one cubic point group. The GaAs
and Ge (111) patterns are particularly hard to distinguish. It is necessary to perform experiments
revealing the internal or relative symmetries of dark-field orders; these experiments are compara-
tively difficult and do not yield really convincing results. The difficulty arises from the need to
maintain the same specimen thickness whilst changing the angle of incidence with respect to the
zone axis. On account of the relatively large reciprocal lattice vectors normal to (111} it is not
practical to change the specimen inclination without displacing the probe significantly and we
therefore achieved the required effect by displacing the second condenser aperture. For large
displacements this procedure also fails because the aberrations both increase the spot size and
cause distortion in the back focal plane. However, the difference between the six {220} reflexions
of Ge and GaAs is the presence of an internal mirror line and to observe this it is only necessary
to carry out a relatively small aperture displacement. Unfortunately, the difference between the
patterns obtained in this way amounts to a small change in the relative intensity of upper layer
lines in GaAs either side of the position of the mirror line in Ge. Moreover some doubt is thrown
even onto these results by the observation of a similar asymmetry for thick Ge specimens. This is
apparently due to the displacement between the peak of diffuse scattering, which is centred on
the mean beam direction, and the centre of the dark field disk.

So far our experiments have relied on upper layer effects to distinguish the GaAs from the Ge.
It is, however, also possible to detect the difference between these two materials in the projection
approximation. One of the most useful zone axes in drawing the distinction is the (110) axis.
According to tables 4 and 1, the whole pattern symmetry of GaAs is m whereas that of Ge is 2mm;
the lower symmetry of the former is revealed by the difference between the + {002} disks
(figure 13, plate 2). As an example of the determination of the internal symmetry of a dark-field
order, we show in figure 14 convergent beam patterns of GaAs obtained by displacing the
condenser aperture to tilt the illumination to +{002}. These reveal the predicted 2mm sym-
metry in the {002} disks. Note that in this case the pattern symmetry is not affected by making the
projection approximation.

Finally, an example of a lower symmetry zone axis displays the usefulness of being able to
distinguish upper and zero layer effects (figure 15). The symmetries of both the whole pattern
and of the bright field are m, but if we ignore the fine lines and so effectively use the projection
approximation, the symmetries are both 2mm. The only diffraction group with this property is
2gmmy, the predicted symmetry for Si (211).

We have so far presented results where the zone axis is approximately parallel to the surface
normal as assumed in the earlier sections. However it is common to tilt through angles of 30° or
more in crystallographic work with the electron microscope. Our experience of such experiments
is that the bright field symmetry is hardly affected (but see § 6). Even in the case of a Si {100}
section tilted to {111} the only effect was a small change in the relative visibility of equivalent
upper layer lines. The situation has, however, been found to be much more complicated when
dark field symmetries are studied. In some cases tilts of 20° or less have a marked effect on these
patterns as in the example illustrated in figure 16 for a gold {111} epitaxial film tilted to {211},
In others, the patterns are relatively insensitive to tilt. Further work is required to clarify this.
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6. DISCUSSION AND CONCLUSIONS

As we have used only a very specialized model for the scattering processes, it is worth noting
some of the deficiencies and advantages of our approach. We have not discussed inelastic or
diffuse scattering of the incident electrons, except in so far as these processes absorb intensity
from the coherent elastically scattered waves. Also we have yet to investigate the detailed effect
of the shape of the specimen (Moodie 1972) but it seems that where shape effects are important,
the diffraction symmetry may not be one of the diffraction groups. However, if the specimen is
a platelet, the diffraction groups do describe all the possible symmetry properties of the diffracted
waves. For this type of specimen the exact orientation of the surfaces is important (Goodman
1974), and the diffraction group observed may well be different from that predicted in table 4
if the symmetric Laue condition is not satisfied (e.g. figure 16). In this case the diffraction group
cannot be obtained from the crystal point group alone. It should be obtained from the space
group of the platelet itself.

The specimens usually used in microscopy are chemically or ion thinned, and have very
uneven surfaces, often forming a rough wedge shape. Although the experiments discussed in § 5
were performed on this type of specimen, we have seen that the results agree with our predictions,
which essentially depend on three assumptions: (1) the symmetric Laue condition; (2) flat
surfaces; (3) that irreducible lattice translations normal to the surfaces assumed in (2) are
not important.

In the absence of perfectly flat surfaces it seems that assumptions (1) and (3) will not be
important, and that the roughness itself will only contribute to background noise in our pictures.
Also, for the relatively thick specimens we have used, much of the image contrast is probably due
to inelastically scattered electrons which remain partially coherent with the elastically scattered
electrons (Howie 1963). The details of the surfaces would not be important for these electrons.
However, for thin specimens with flat surfaces, irreducible lattice translations not parallel to the
surface may be important and the diffraction group must then be derived from the space group
of the specimen itself. This space group will be one of the 80 diperiodic space groups (Megaw
1973 and cf. § 2 (4)).

One important advantage of our model has been that it treated the scattering dynamically,
without any restrictions on the number or origin of the diffracted waves. Upper-layer effects were
included naturally within the scheme, although it was easy to discuss the effect of the projection
approximation and systematic diffraction. The Bloch wave approach (see, for example, Hirsch
et al. 1965) was not used because it becomes complicated if upper layer effects are important. The
complications arise from the choice of the linearly independent Bloch waves and the boundary
conditions at the surfaces (Dederichs 1971). If the projection approximation is valid, and elasti-
cally back scattered electrons are ignored, the Bloch wave expansion of the electron wavefunction
in the crystal slab is quite simple (Hirsch et al. 1965) and can be used to derive the symmetry
properties in a straightforward way (some examples are discussed by Fukuhara 1966). We have
checked that our results may be obtained from the Bloch wave approach. Interestingly, absorp-
tion can be included exactly in the Bloch wave theory (Dederichs 1971) and like the present
approach it can be extended to non-local optical potentials. No new results are obtained.

Although our method describes the diffraction exactly, it does not provide explicit solutions
for the transmission coefficients 7”(K). We have therefore not discussed forbidden or
dynamically forbidden reflections (Gjennes & Moodie 1965) which can themselves provide
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useful symmetry information about the space group. We have obtained a set of simple rules
which can often be applied quickly and easily to enable the crystal point group of the specimen
to be determined. It is significant that the inversion centre has no privileged position in this
scheme since Friedel’s law does not apply to electron diffraction. We have also shown that high
resolution lattice images can contribute to the determination of the crystal point group and
space group.

Despite the limitations discussed here, we have shown how the convergent beam and bend
contour techniques facilitate the determination of crystal symmetries.

We wish to acknowledge the enthusiastic support and encouragement of this work by
Professor F. C. Frank, F.R.S., and the assistance of the Royal Radar Establishment, Malvern
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ship (J.A.E.). The Science Research Council also provided support in the form of a Postdoctoral
Research Fellowship (B.F.B.) and a C.A.S.E. Research Studentship with the R.R.E. (G.M.R.)
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IGURE 11. GaAs (100) axial convergent beam pattern from a {100} foil; the micrograph was taken at a nominal
operating voltage of 60 kV with the specimen cooled to a temperature of approximately 90 K. {020} disks
are rather weak and adjoin the central disk. In this and subsequent figures any discrepancy between the
pattern and disk centres 1s due to slight misalignment of the crystal.
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GURE 12. InP (100) axial convergent beam pattern from a {100} foil; the micrograph was taken at a nominal
operating voltage of 80 kV with the specimen cooled to a temperature of approximately 90 K. 'The {020}
disks lie closest to the central disk.
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IGURE 13. (110) axial convergent beam patterns of Ge and GaAs taken at 100 kV. (a) and (¢) are from Ge {111}

foils of different thickness; (b) and (d) are from GaAs {110} foils of approximately the same thickness as used
in (a) and (¢). The + {002} disks lie on the horizental lines either side of the central disk. The central disk
of (a) 1s probably distorted by thickness change within the illuminated area of the specimen.
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FiGure 14. GaAs (110) convergent beam patterns from a {110} foil taken at an operating voltage of 100 kV.
There 1s axial illumination in (b); in (a) and (¢) the image of the aperture has been shifted to the right and
left respectively. The centres of the zero order and + {002} disks are marked by the intersection of the solid
vertical lines with the horizontal line. The dashed lines intersect the horizontal line at the + {002} Bragg
positions.
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IGURE 15. S1{(211) axial convergent beam pattern from a {111} foil taken at an operating voltage of approximately
96.5 kV. The broken horizontal line would be a miurror line 1in the projection approximation.
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(GURE 16. Multiple dark-field image of gold (211) showing out-of-focus bend contours in each disk. The {111}
specimen has been tilted through 20° about the (011) direction perpendicular to the line of the disks to
obtain this pattern. Tables 4 and 2 predict 2 mm symmetry for the pattern but the tilted surfaces destroy the
mirror line parallel to the tilt axis (M. D. Shannon, unpublished work)
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